EMC TEST REPORT

For

Chang Zhou Dings Electrical&Mechanical Co.,Ltd

Hollow shaft Actuator

Model No.: 14H2045

Additional Model No.: 8H, 11H, 14H, 17H, 23H, 24H

Prepared for : Chang Zhou Dings Electrical&Mechanical Co.,Ltd

Address : 3rd floor, Block C, Tian'an Industrial Park, New District,

Changzhou, Jiangsu, China

Prepared by : Shenzhen LCS Compliance Testing Laboratory Ltd.

Address : 1/F., Xingyuan Industrial Park, Tongda Road, Bao'an

Avenue, Bao'an District, Shenzhen, Guangdong, China

Tel : (+86)755-82591330 Fax : (+86)755-82591332 Web : www.LCS-cert.com

Mail : webmaster@LCS-cert.com

Date of receipt of test sample : August 02, 2017

Number of tested samples : 1

Serial number : Prototype

Date of Test : August 02, 2017~ August 18, 2017

Date of Report : August 22, 2017

EMC TEST REPORT

EN 55014-1: 2006+A1: 2009+A2: 2011

Requirements for household appliances, electric tools and similar apparatus -- Part 1: Emission

EN 55014-2: 2015

Requirements for household appliances, electric tools and similar apparatus -- Part 2: Immunity Product family standard

Report Reference No.: LCS170802047AE

Date Of Issue: August 22, 2017

Testing Laboratory Name: Shenzhen LCS Compliance Testing Laboratory Ltd.

Bao'an District, Shenzhen, Guangdong, China

Testing Location/ Procedure: Full application of Harmonised standards

Partial application of Harmonised standards

Other standard testing method

Applicant's Name.....: Chang Zhou Dings Electrical&Mechanical Co.,Ltd

Address...... 3rd floor, Block C, Tian 'an Industrial Park, New District,

Changzhou, Jiangsu, China

Test Specification:

Standard: EN 55014-1: 2006+A1: 2009+A2: 2011

EN 55014-2: 2015

Test Report Form No.: LCSEMC-1.0

TRF Originator.....: Shenzhen LCS Compliance Testing Laboratory Ltd.

Master TRF: Dated 2011-03

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. is acknowledged as copyright owner and source of the material. SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test Item Description.....: Hollow shaft Actuator

Trade Mark.....: DINGS'

Model/ Type Reference..... 14H2045

Ratings: DC 1-24V, 0.5-8A

Result Positive

Compiled by:

Supervised by:

Dalla en

Raing Ye/ File administrators

Davey Xu/ Technique principal

Gavin Liang Manager

EMC -- TEST REPORT

Test Report No.: LCS170802047AE

August 22, 2017
Date of issue

Type / Model	: 14H2045
EUT	: Hollow shaft Actuator
Applicant	: Chang Zhou Dings Electrical&Mechanical Co.,Ltd
Address	: 3rd floor, Block C, Tian ´ an Industrial Park, New District,
	Changzhou, Jiangsu, China
Telephone	
Fax	
Manufacturer	: Chang Zhou Dings Electrical&Mechanical Co.,Ltd
	: 3rd floor, Block C, Tian ´ an Industrial Park, New District,
	Changzhou, Jiangsu, China
Telephone	
Fax	
1'ax	• /
Factory	: Chang Zhou Dings Electrical&Mechanical Co.,Ltd
•	
Address	: 3rd floor, Block C, Tian ´ an Industrial Park, New District,
	Changzhou, Jiangsu, China
Telephone	
Fax	:/

Test Result according to the standards on page 6: **Positive**

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Revision History

Revision	Issue Date	Revisions	Revised By
000	August 22, 2017	Initial Issue	Gavin Liang

TABLE OF CONTENT

Test Report Description	Page
1. SUMMARY OF STANDARDS AND RESULTS	6
1.1.Description of Standards and Results	6
1.2.Description of Performance Criteria	7
2. GENERAL INFORMATION	8
2.1.Description of Device (EUT)	8
2.2.Test Facility	
2.3.Statement of the measurement uncertainty	
2.4.Measurement Uncertainty	
3. MEASURING DEVICES AND TEST EQUIPMENT	10
3.1.Radiated Disturbance (Electric Field)	10
3.2.Electrostatic Discharge	10
3.3.RF Field Strength Susceptibility	10
4. RADIATED EMISSION MEASUREMENT	11
4.1.Block Diagram of Test Setup	11
4.2.Test Standard	11
4.3.Radiated Emission Limits	11
4.4.EUT Configuration on Test	12
4.5.Operating Condition of EUT	
4.6.Test Procedure	
4.7.Test Results	12
5. ELECTROSTATIC DISCHARGE IMMUNITY TEST	14
5.1.Block Diagram of Test Setup	14
5.2.Test Standard	14
5.3. Severity Levels and Performance Criterion	14
5.4.EUT Configuration on Test	
5.5.Operating Condition of EUT	15
5.6.Test Procedure	
5.7.Test Results	15
6. PHOTOGRAPH	17
6.1. Photo of Radiated Measurement	17
6.2. Photo of Electrostatic Discharge Test	17
6.3.Photo of Radio-frequency, Continuous radiated disturbance	18
7. EXTERNAL AND INTERNAL PHOTOS OF THE EUT	19

1. SUMMARY OF STANDARDS AND RESULTS

1.1.Description of Standards and Results

The EUT have been tested according to the applicable standards as referenced below.

EMISSION (EN 55014-1: 2006+A1: 2009+A2: 2011)						
Description of Test Item		Standard		Limits	Results	
Conducted disturbance at mains terminals	ΕN	N 55014-1: 2006+A1: 2009+A2: 20	11		N/A	
Clicks	ΕN	N 55014-1: 2006+A1: 2009+A2: 20	11		N/A	
Disturbance Power	ΕN	N 55014-1: 2006+A1: 2009+A2: 20	11		N/A	
Radiated disturbance		EN 55022: 2010			PASS	
Harmonic current emissions		EN 61000-3-2: 2014		Class A	N/A	
Voltage fluctuations & flicker		EN 61000-3-3: 2013			N/A	
IMMUNITY (EN 55014-2: 2015)						
Description of Test Item		Basic Standard		rformance Criteria	Results	
Electrostatic discharge (ESD)		EN 61000-4-2: 2009		В	PASS	
Radio-frequency, Continuous radiated disturbanc	e	EN 61000-4-3: 2006+A1: 2010		А	N/A	
Electrical fast transient (EFT)		EN 61000-4-4: 2012		В	N/A	
Surge (Input a.c. power ports)		EN 61000-4-5: 2014		В	N/A	
Radio-frequency, Continuous conducted disturban	се	EN 61000-4-6: 2014		Α	N/A	
Power frequency magnetic field	t	EN 61000-4-8: 2010		Α	N/A	
Voltage dips, 60% reduction				С	N/A	
Voltage dips, 30% reduction	Voltage dips, 30% reduction			С	N/A	
Voltage interruptions				С	N/A	
N/A is an abbreviation for Not App	licat	ole.				

1.2.Description of Performance Criteria

General Performance Criteria

Examples of functions defined by the manufacturer to be evaluated during testing include, but are not limited to, the following:

- essential operational modes and states;
- tests of all peripheral access (hard disks, floppy disks, printers, keyboard, mouse, etc.);
- quality of software execution;
- quality of data display and transmission;
- quality of speech transmission.

1.2.1.Performance criterion A

The equipment shall continue to operate as intended without operator intervention. No degradation of performance or loss of function is allowed below a performance level specified by the manufacture when the equipment is used as intended. The performance level may be replaced by a permissible loss of performance. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be deriver from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.

1.2.2.Performance criterion B

After the test, the equipment shall continue to operate as intended without operator intervention. No degradation of performance or loss of function is allowed, after the application of the phenomena below a performance level specified by the manufacture, when the equipment is used as intended. The performance level may be replaced by a permissible loss of performance.

During the test, degradation of performance is allowed. However, no change of operation state or stored data is allowed to persist after the test.

If the minimum performance level (or the permissible performance loss) is not specified by the manufacturer, then either of these may be deriver from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.

1.2.3.Performance criterion C

Loss of function is allowed, provided the function is self-recoverable, or can be restored by the operation of the controls by the user in accordance with the manufacture's instructions.

Functions, and/or information stored in non-volatile memory, or protected by a battery backup, shall not be loss.

2. GENERAL INFORMATION

2.1.Description of Device (EUT)

EUT : Hollow shaft Actuator

Trade Mark : DINGS'

Model Number : 14H2045

Power Supply : DC 1-24V, 0.5-8A

EUT Clock Frequency: ≤15MHz

2.2.Test Facility

Site Description

EMC Lab. : CNAS Registration Number. is L4595.

FCC Registration Number. is 899208.

Industry Canada Registration Number. is 9642A-1.

ESMD Registration Number. is ARCB0108.

UL Registration Number. is 100571-492.

TUV SUD Registration Number. is SCN1081.

TUV RH Registration Number. is UA 50296516-001

2.3. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. To CISPR 16 – 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the LCS quality system acc. To DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

2.4. Measurement Uncertainty

Test Item	Frequency Range	Expanded uncertainty (Ulab)	Expanded uncertainty (Ucispr)
Radiated Emission	Level accuracy (9kHz to 30MHz)	± 3.68 dB	N/A
Radiated Emission	Level accuracy (30MHz to 1000MHz)	± 3.48 dB	± 5.2 dB
Radiated Emission	Level accuracy (above 1000MHz)	± 3.90 dB	N/A

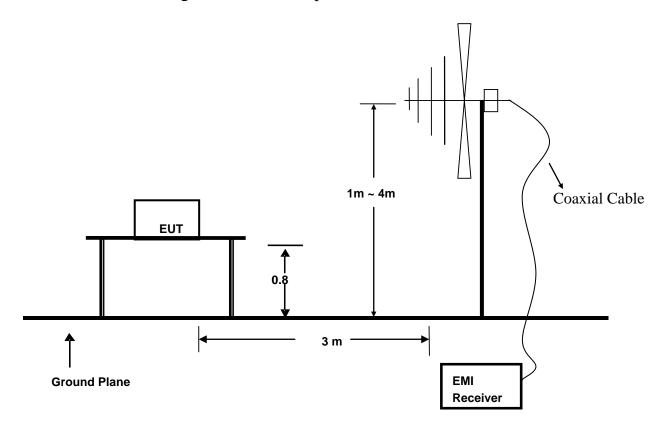
- (1) Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus.
- (2) The reported expanded uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor of k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

3. MEASURING DEVICES AND TEST EQUIPMENT

3.1.Radiated Disturbance (Electric Field)

Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.
1	3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	2017-06-17
2	EMI Test Receiver	ROHDE & SCHWARZ	ESR 7	101181	2017-06-17
3	Log per Antenna	SCHWARZBECK	VULB9163	9163-470	2017-04-17
4	EMI Test Software	AUDIX	E3	N/A	2017-06-17
5	Positioning Controller	MF	MF-7082	/	2017-06-17

3.2. Electrostatic Discharge


Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.
1	ESD Simulator	SCHLODER	SESD 230	604035	2017-06-17

3.3.RF Field Strength Susceptibility

Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.
1	RF POWER AMPLIFIER	OPHIR	5225R	1052	2017-03-22
2	RF POWER AMPLIFIER	OPHIR	5273F	1019	2017-03-24
3	Stacked Broadband Log	SCHWARZBECK	STLP	9128ES-145	2017-04-28
3	Periodic Antenna	SCHWARZDECK	9128	9120ES-143	2017-04-28
4	Stacked Mikrowellen	SCHWARZBECK	STLP	9149-482	2017-04-28
4	LogPer Antenna	SCITWARZDECK	9149	9149-402	2017-04-28
5	Signal Generator	Agilent	E4438C	MY42081396	2016-11-18
6	Electric field probe	Narda S.TS./PMM	EP601	611WX70332	2017-02-05
7	Power Meter	Agilent	E4419B	MY45104493	2017-06-17
8	Power Sensor	Agilent	E9301H	MY41495234	2017-06-17
9	Power Sensor	Agilent	E4412A	MY41500229	2017-06-17

4. RADIATED EMISSION MEASUREMENT

4.1.Block Diagram of Test Setup

4.2.Test Standard

EN 55014-1: 2006+A1: 2009+A2: 2011 (EN 55022: 2010)

4.3. Radiated Emission Limits

FREQUENCY	DISTANCE	FIELD STRENGTHS LIMIT
(MHz)	(Meters)	(dBµV/m)
30-230	3	40
230-1000	3	47

Note: (1) The smaller limit shall apply at the combination point between two frequency bands.

(2) Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the EUT.

4.4.EUT Configuration on Test

The EN 55022 regulations test method must be used to find the maximum emission during radiated emission measurement.

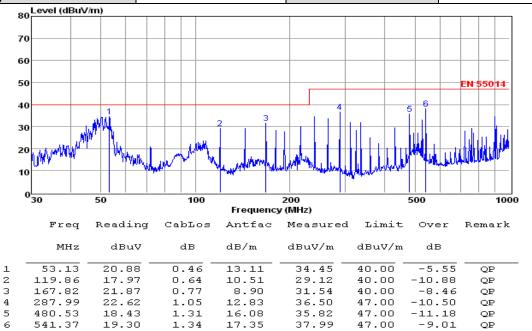
4.5. Operating Condition of EUT

- 4.5.1. Turn on the power.
- 4.5.2. After that, let the EUT work in test mode (ON) and measure it.

4.6.Test Procedure

The EUT is placed on a turntable, which is 0.8 meter high above the ground. The turntable can rotate 360 degrees to determine the position of the maximum emission level. The EUT is set 3 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down from 1 to 4 meters to find out the maximum emission level. By-log antenna (calibrated by Dipole Antenna) is used as a receiving antenna. Both horizontal and vertical polarization of the antenna is set on test.

The bandwidth of the Receiver is set at 120kHz.


The frequency range from 30MHz to 1000MHz is investigated.

4.7.Test Results

PASS.

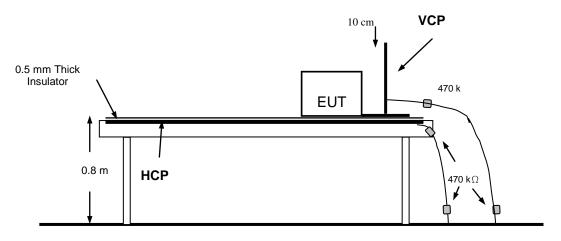
The scanning waveform please refer to the next page.

Model No.	14H2045	Test Mode	ON
Environmental Conditions	27.4°C, 54.8% RH	Detector Function	Quasi-peak
Pol	Vertical	Distance	3m
Test Engineer	Daiwei Dai		

1

4

Note: 1. All readings are Quasi-peak values. 2. Measured= Reading + Antenna Factor + Cable Loss


3. The emission that ate 20db blow the offficial limit are not reported

Model No.		14	H2045		Test Mod	le	ON	
Environmental	Condit	ions 27	′.4°C, <u>5</u> 4	.8% RH	Detector	Detector Function		asi-peak
Pol		Н	orizontal		Distance		3m	
Test Engineer		D	aiwei Da	i				
80 ^{Le}	evel (dBuV/i	n)						
70								
60								
60								
50								EN 55014
40					1 1	5	6	
30				2	3			
20 10		What	A STATE AND A STATE OF THE STAT	Land Mary			Jana Jakaban	
0 <mark>3</mark> (0	50	100	Frequency	200 (MHz)	!	500	1000
	Freq	Reading	CabLo	s Antfac	Measured	Limit	Over	Remark
	MHz	dBuV	dВ	dB/m	dBuV/m	dBuV/m	dB	
1 -	54.64	9.26	0.46	13.04	22.76	40.00	-17.24	QP
	119.86	19.47	0.64	10.51	30.62	40.00	-9.38	QP
2			1 01	12.09	31.37	47.00	-15.63	QP
2 :	239.99	18.27	1.01					
2 3 3 4 4 2		18.27 25.04 22.34	1.01	12.17	38.24	47.00 47.00	-8.76	_

3. The emission that ate 20db blow the offficial limit are not reported

5. ELECTROSTATIC DISCHARGE IMMUNITY TEST

5.1.Block Diagram of Test Setup

Ground

5.2.Test Standard

EN 55014-2: 2015

(EN 61000-4-2: 2009, Severity Level: 3 / Air Discharge: ± 8KV, Level: 2 /

Contact Discharge: ±4KV)

5.3. Severity Levels and Performance Criterion

5.3.1.Severity level

Level	Test Voltage	Test Voltage
	Contact Discharge (KV)	Air Discharge (KV)
1.	±2	±2
2.	±4	±4
3.	±6	±8
4.	±8	±15
X	Special	Special

5.3.2.Performance criterion: **B**

5.4.EUT Configuration on Test

The configuration of EUT are listed in Section 3.7.

5.5. Operating Condition of EUT

Same as conducted emission measurement, which is listed in Section 4.5 except the test set up replaced by Section 5.1.

5.6.Test Procedure

5.6.1.Air Discharge

This test is done on a non-conductive surface. The round discharge tip of the discharge electrode shall be approached as fast as possible to touch the EUT. After each discharge, the discharge electrode shall be removed from the EUT. The generator is then re-triggered for a new single discharge and repeated 10 times for each pre-selected test point. This procedure shall be repeated until all the air discharge completed.

5.6.2.Contact Discharge

All the procedure shall be same as Section 5.6.1. except that the tip of the discharge electrode shall touch the EUT before the discharge switch is operated.

5.6.3.Indirect Discharge For Horizontal Coupling Plane

At least 10 single discharges (in the most sensitive polarity) shall be applied at the front edge of each HCP opposite the center point of each unit (if applicable) of the EUT and 0.1m from the front of the EUT. The long axis of the discharge electrode shall be in the plane of the HCP and perpendicular to its front edge during the discharge.

5.6.4.Indirect Discharge For Vertical Coupling Plane

At least 10 single discharges (in the most sensitive polarity) shall be applied to the center of one vertical edge of the coupling plane. The coupling plane, of dimensions 0.5m X 0.5m, is placed parallel to, and positioned at a distance of 0.1m from the EUT. Discharges shall be applied to the coupling plane, with this plane in sufficient different positions that the four faces of the EUT are completely illuminated.

5.7.Test Results

PASS.

Please refer to the next page.

Report No.:	LCS170802047AE
-------------	----------------

Ele	ectrosta	atic Di	scharg	e T	est	Resu	lts					
Standard	☐ IEC 61000-4-2											
Applicant	Chang Zhou Dings Electrical&Mechanical Co.,Ltd											
EUT	Hollow shaft Actuator				Temperature			25.6℃				
M/N	14H2045				Humidity				54%			
Criterion	В				Pressure				1021mbar			
Test Mode	Normal T					Test Engineer Daiwei Dai						
		A	ir Discharg	je								
	Test Levels				Results							
Test Points	± 2KV	± 4KV	± 8KV	Pass		Fail		Performance Criterion				
Front	\boxtimes	\boxtimes	\boxtimes		\boxtimes			A	⊠B			
Back	\boxtimes	\boxtimes			\boxtimes			A	$\boxtimes \mathbf{B}$			
Left	\boxtimes	\boxtimes			\boxtimes			A	$\boxtimes \mathbf{B}$			
Right	\boxtimes	\boxtimes	\boxtimes		\boxtimes			A	$\boxtimes \mathbf{B}$			
Тор	\boxtimes	\boxtimes	\boxtimes		\boxtimes			A	$\boxtimes \mathbf{B}$			
Bottom	\boxtimes							A	$\boxtimes \mathbf{B}$			
		Cor	ntact Discha	rge								
	Test Levels			Results								
Test Points	± 2 KV	,	±4 KV		ass	Fail		Performance Criterion				
Front	\boxtimes		\boxtimes		\boxtimes			A	$\boxtimes \mathbf{B}$			
Back			\boxtimes					A	⊠B			
Left	\square							_A	B			
Right							<u> </u>	A	B			
Тор								A	B			
Bottom							□A ⊠B					
	<u>_</u>		o Horizonta	al Co	upling							
Side of EUT	Test Levels			Res								
	± 2 KV	:	± 4 KV		ass	Fail		Performance Criterion				
Front	\boxtimes		\boxtimes		\boxtimes		Ē]A	$\boxtimes \mathbf{B}$			
Back	\boxtimes		\boxtimes					A	$\boxtimes \mathbf{B}$			
Left			\boxtimes	\boxtimes				A	⊠B			
Right								A	⊠B			
	Γ	Discharge T	o Vertical (Coup	ling Pl	ane						
Side of EUT	Test Levels				Results							
	± 2 KV		± 4 KV	Pass		Fail		Performance Criterion				
Front	\boxtimes		\boxtimes		\boxtimes		[\Box A	$\boxtimes \mathbf{B}$			
Back			\boxtimes		\boxtimes			\Box A	$\boxtimes \mathbf{B}$			
Left			\boxtimes		\boxtimes			\Box A	$\boxtimes \mathbf{B}$			
D' 14	_	1	_	_	_		-	− 1.				

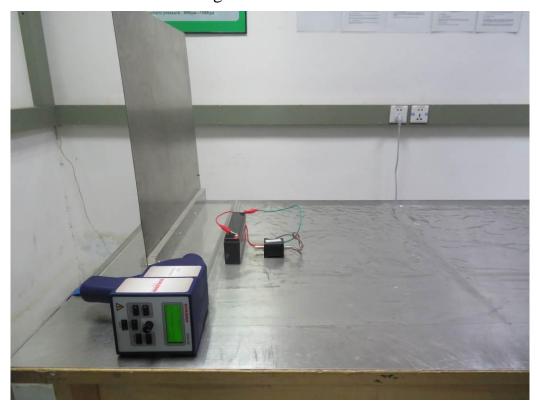
 \boxtimes

 \boxtimes

 \square A


 $\boxtimes B$

 \boxtimes


Right

6. PHOTOGRAPH

6.1. Photo of Radiated Measurement

6.2. Photo of Electrostatic Discharge Test

6.3. Photo of Radio-frequency, Continuous radiated disturbance

7. EXTERNAL AND INTERNAL PHOTOS OF THE EUT

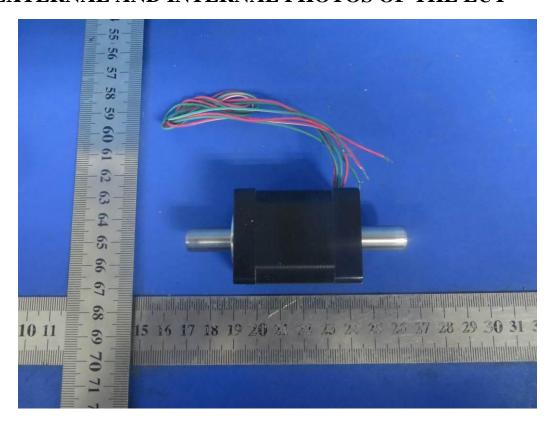


Fig. 1

Fig. 2

Fig. 3

-----THE END OF TEST REPORT-----